The contents of this report reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the views or policies of the Iowa Department of Transportation, the Michigan Department of Transportation, or the Minnesota Department of Transportation at the time of its publication. This report does not constitute a standard, specification, or regulation.

The authors and the sponsoring states do not endorse products or manufacturers. Trade or manufacturers’ names appear herein solely because they are considered essential to the objectives of the report.

CTRE’s mission is to develop and implement innovative methods, materials, and technologies for improving transportation efficiency, safety, and reliability, while improving the learning environment of students, faculty, and staff in transportation-related fields.
CONCEPT HIGHWAY MAINTENANCE VEHICLE

FINAL REPORT: PHASE TWO

PRINCIPAL INVESTIGATOR
DUANE E. SMITH

PRINCIPAL CONTRIBUTORS
BILL M. McCall
DENNIS KROEGER

RESEARCH ASSISTANTS
JEFF ZOGG
TIM SIMODYNES
KAREN GIESE

Center for Transportation Research and Education
Iowa State University Research Park
2625 N. Loop Drive, Suite 2100
Ames, IA 50010-8615
515-294-8103
515-294-0467 (fax)
www.ctre.iastate.edu/

sponsored by

Iowa Department of Transportation
U.S. Department of Transportation
Federal Highway Administration

DECEMBER 1998
TECHNOLOGY DISCUSSION

CHAPTER 3: PROOF OF CONCEPT ... 29
 INSTALLATION ... 29
 PERFORMANCE .. 30
 PROOF OF CONCEPT SUMMARIES ... 30

CHAPTER 4: INTRODUCTION TO TECHNOLOGIES 33
 BASIC PROTOTYPE VEHICLE CONFIGURATIONS 33
 PROTOTYPE VEHICLE ROUTES .. 37

CHAPTER 5: TRUCKS, PLOWS, SPREADERS ... 41
 OBJECTIVE ... 41
 MEASUREMENT ... 41
 DISCUSSION .. 42
 Iowa Prototype Vehicle ... 42
 Michigan Prototype Vehicle .. 46
 Minnesota Prototype Vehicle .. 48
 OBSERVATIONS ... 51

CHAPTER 6: PLOWMASTER .. 53
 OBJECTIVE ... 53
 MEASUREMENT ... 53
 DISCUSSION .. 54
 PlowMaster Components and Installation ... 54
 Operations: Data Collection, Formatting, and Storage 56
 Operations: MDT Display ... 59
 Performance .. 69
 OBSERVATIONS ... 70

CHAPTER 7: GLOBAL POSITIONING SYSTEM (GPS) 73
 OBJECTIVE ... 73
 MEASUREMENT ... 73
 DISCUSSION .. 73
 Installation ... 73
 Performance .. 74
 OBSERVATIONS ... 74
CHAPTER 13: DATA MANAGEMENT

OBJECTIVE ... 107
MEASUREMENT ... 107
DISCUSSION ... 107
 Raw Data from PlowMaster ... 109
 Data Filtering .. 113
 Conversion to Central Standard Time .. 114
 Computing Distance Traveled ... 114
 Conversion to Milepost ... 115
OBSERVATIONS .. 118

OBSERVATIONS

CHAPTER 14: COST IMPLICATIONS OF TECHNOLOGY APPLICATIONS 119

INITIAL COST OF TECHNOLOGY ... 119
EFFECTIVE USE OF CHEMICALS AND ABRASIVES ... 121
 Objective ... 121
 Measurement .. 121
 Discussion ... 121
OBSERVATIONS .. 124
CONCLUSION .. 124

CHAPTER 15: OPERATOR INPUT AND ACCEPTANCE ... 125

OBJECTIVE ... 125
MEASUREMENT .. 125
DISCUSSION ... 125
 Operator Interviews ... 125
 Vehicle Performance Log Sheet .. 129
OBSERVATIONS .. 130
 Observations from Operator Interviews .. 130
 Observations from Equipment Performance Log Sheets .. 131

CHAPTER 16: NEW AND DEVELOPING TECHNOLOGIES 133

TECHNOLOGIES CONSIDERED FOR PHASE III ... 133
 Differential GPS ... 133
 Chemical Sensor .. 133
 Data Averaging ... 133
 Mapping Packages .. 133
 Cellular Telephone Communications Link ... 134

TECHNOLOGIES BEING CONSIDERED BEYOND PHASE III 134
 Radio Communications Link .. 134
 Collision Avoidance System ... 135
 Additional Weather Data .. 135
CHAPTER 17: DATA INTEGRATION WITH DOT MANAGEMENT SYSTEMS........137

OBJECTIVE.. 137
MEASUREMENT.. 137
DISCUSSION.. 137
 Top-down Approach Implementation... 137
 Management Systems Interface... 138
 Concept Vehicle Interface.. 139
OBSERVATION.. 140

LIST OF APPENDICES.. 141

(collected under separate cover)
LIST OF FIGURES

FIGURE E-1 FOUNDATION STATEMENTS AND STUDY PROCESS MAP2
FIGURE E-2 EQUIPMENT OPERATOR FEEDBACK ..6
FIGURE 1-1 STUDY PROCESS MAP ..13
FIGURE 1-2 FOUR-PHASE TIME LINE ...14
FIGURE 1-3 PHASE II PROTOTYPE VEHICLE SYSTEM ARCHITECTURE16
FIGURE 2-1 THREE-STEP PROCESS FLOWCHART23
FIGURE 2-2 INITIAL PROTOTYPE TEAMS FOR WINTER 1996-199722
FIGURE 2-3 RELATIONSHIP OF THE PRIVATE SECTOR PARTICIPANTS TO EACH CONCEPT VEHICLE AT THE END OF PHASE I28
FIGURE 4-1 IOWA’S PROTOTYPE MAINTENANCE VEHICLE34
FIGURE 4-2 IOWA PROTOTYPE VEHICLE ROUTE, WINTER 1997-199838
FIGURE 4-3 MINNESOTA PROTOTYPE VEHICLE ROUTE, WINTER 1997-1998 ...39
FIGURE 4-4 MICHIGAN PROTOTYPE VEHICLE ROUTE, WINTER 1997-199840
FIGURE 5-1 GAUGES, IOWA VEHICLE ...43
FIGURE 5-2 INITIAL PLACEMENT OF PLOWMASTER AND FRICTION METER DISPLAYS, IOWA VEHICLE ..44
FIGURE 5-3 FINAL PLACEMENT OF DISPLAYS AND TECHNOLOGY GAUGES, IOWA VEHICLE ...45
FIGURE 5-4 MATERIAL APPLICATOR CONTROLS, IOWA VEHICLE46
FIGURE 5-5 MICHIGAN PROTOTYPE VEHICLE CAB CONTROLS48
FIGURE 5-6 CAB CONTROLS, MINNESOTA VEHICLE49
FIGURE 5-7 PLOWMASTER DISPLAY, MINNESOTA VEHICLE50
FIGURE 5-8 MATERIAL APPLICATOR CONTROLS, MINNESOTA VEHICLE50
FIGURE 6-1 INTERFACES BETWEEN PLOWMASTER AND OTHER ADD-ON TECHNOLOGIES ...54
FIGURE 6-2 PLOWMASTER EQUIPMENT ...55
FIGURE 6-3 PLOWMASTER FUNCTIONS ...57
FIGURE 6-4 PLOWMASTER INPUT/OUTPUT PARAMETERS57
FIGURE 6-6 TYPICAL MAIN PAGE ..61
FIGURE 6-7 TEMPERATURE PAGE ...63
FIGURE 6-8 TEMPERATURE SETUP PAGE ...64
FIGURE 6-9 SPREADER PAGE ...65
FIGURE 6-10 FRICTION MONITOR PAGE ..65
FIGURE 6-11 FRICTION METER SETUP PAGE ...66
FIGURE 6-12 PLOW STATUS PAGE ...67
FIGURE 6-13 FULL PLOW STATUS PAGE ...68
FIGURE 6-14 ENGINE STATUS PAGE ..68
FIGURE 8-1 ROAR FRICTION METER ...78
FIGURE 8-2 FRICTION METER, IOWA PROTOTYPE VEHICLE81
FIGURE 8-3 FRICTION METER, IOWA PROTOTYPE VEHICLE81
FIGURE 8-4 RADO MODEL FRICTION PRINT ...83
FIGURE 8-5 ASTM E-274 PARAMETERS ..84
FIGURE 8-6 FRICTION TRENDS FROM DATA COMPARISON, ST. CLOUD, MINNESOTA, SEPTEMBER 18, 1997 ...85
FIGURE 8-7 ADDITIONAL IOWA TESTING RESULTS, APRIL 16, 199887
FIGURE 8-8 COMPARISON OF IOWA’S ADDITIONAL TEST RESULTS FROM APRIL 16, 1998, WITH TRENDLINES FROM MINNESOTA DOT AND ROADWARE DATA COLLECTED ON SEPTEMBER 18, 1997 ...88
FIGURE 8-9 COMPARISON OF MU PEAK MEASURED BY THE VARIOUS NORSEMETER UNITS VERSUS THE MU PEAK MEASURED BY A K.J. LAW UNIT AT THE SEPTEMBER 18, 1997 TESTS.............89

FIGURE 8-10 COMPARISON OF F60 MEASURED BY THE VARIOUS NORSEMETER VERSUS THE SKID NUMBER (SN) MEASURED BY A K.J. LAW E274 UNIT AT THE SEPTEMBER 18, 1997 TESTS........89

FIGURE 8-11 WINTER 1997-1998 DATA COLLECTION PLAN, BASED ON THE WORK PLAN FOR TEST AND EVALUATION OF FRICTION MEASURING DEVICES FOR WINTER MAINTENANCE ACTIVITIES...92

FIGURE 9-1 ROADWATCH, IOWA PROTOTYPE VEHICLE..94

FIGURE 10-1 ALCOHOL TANK, IOWA PROTOTYPE VEHICLE...................................98

FIGURE 10-2 HORSEPOWER BOOST, IOWA DOT VEHICLE, JULY 22, 1997............................99

FIGURE 10-3 HORSEPOWER BOOST, MINNESOTA DOT VEHICLE, OCTOBER 7, 1997............................99

FIGURE 10-4 HORSEPOWER BOOST, MICHIGAN DOT VEHICLE, NOVEMBER 4, 1997............................100

FIGURE 11-1 FIBER OPTIC LIGHT SYSTEM (CIRCLED), IOWA PROTOTYPE VEHICLE..........................101

FIGURE 11-2 LEFT BALL-AND-SOCKET JOINT (CIRCLED), HID LIGHTING SYSTEM, IOWA VEHICLE..........................103

FIGURE 11-2 RIGHT BALL-AND-SOCKET JOINT (CIRCLED), HID LIGHTING SYSTEM, IOWA VEHICLE..........................103

FIGURE 12-1 LOCATION OF REVERSE OBSTACLE SENSORS (CIRCLED), IOWA VEHICLE..........................106

FIGURE 13-1 PHASE II DATA FLOW CHART..108

FIGURE 13-2 GPS SPEED VERSUS DISTANCE, IOW TRUCK, JANUARY 23, 1998..............................115
FIGURE 13-3 PAVEMENT TEMPERATURE VERSUS MILEPOST,
IOWA VEHICLE, JANUARY 4, 1998..116

FIGURE 13-4 AIR TEMPERATURE VERSUS MILEPOST,
IOWA VEHICLE, JANUARY 4, 1998..117

FIGURE 13-5 MuPEAK VERSUS MILEPOST, IOWA VEHICLE,
JANUARY 4, 1998..117

FIGURE 13-6 MuPEAK VERSUS DISTANCE, MINNESOTA VEHICLE,
FEBRUARY 5, 1998..118

FIGURE 14-1 VERMONT STUDY RECOMMENDED
SALT APPLICATION RATE CURVE..122

FIGURE 14-2 PAVEMENT TEMPERATURE VS MILEPOST..........................123

FIGURE 15-1 SAMPLE EQUIPMENT PERFORMANCE EVALUATION
QUESTIONNAIRE ...126

FIGURE 15-2 SAMPLE EQUIPMENT PERFORMANCE LOG SHEET...........129

FIGURE 15-3 EQUIPMENT OPERATORS' RESPONSE.................................131
LIST OF TABLES

TABLE E-1 TECHNOLOGIES INSTALLED IN PHASE II ... 3
TABLE E-2 PROOF OF CONCEPT RESULTS .. 4
TABLE 1-1 PHASE II LEVEL OF INTEGRATION OF DESIRED FUNCTIONALITY ON PROTOTYPE VEHICLES ... 15
TABLE 1-2 PROOF OF CONCEPT RESULTS .. 16
TABLE 2-1 SELECTED LITERATURE ... 21
TABLE 3-1 PROOF OF CONCEPT RESULTS .. 31
TABLE 4-1 TECHNOLOGY REFERENCE .. 34
TABLE 4-2 CONCEPT VEHICLE TECHNOLOGY AND PROVIDERS MATRIX 35
TABLE 4-3 NAMES, ADDRESSES, AND PHONE NUMBERS OF PRIVATE SECTOR PARTICIPANTS ... 36
TABLE 6-1 EQUIPMENT SUPPLIED ... 54
TABLE 6-2 SENSOR OUTPUTS .. 58
TABLE 6-3 ONBOARD COMPUTER DATA FILE A141801.XLS, IOWA VEHICLE, JANUARY 4, 1998 ... 59
TABLE 6-4 ONBOARD COMPUTER DATA FILE A141801.XLS MICHIGAN VEHICLE, FEBRUARY 24, 1998 ... 59
TABLE 6-5 ONBOARD COMPUTER DATA FILE A13B701.XLS MINNESOTA VEHICLE, FEBRUARY 5, 1998 ... 59
TABLE 6-6 MAINTENANCE ADVISORY MESSAGES .. 62
TABLE 8-1 TEXTURE OF ST. CLOUD, MN, TEST TRACK, SEPTEMBER 18, 1997 ... 84
TABLE 13-1 FILE DIRECTORY, WINTER 1997-1998 ... 111
TABLE 13-2 SAMPLE DATA FROM ONBOARD COMPUTER DATA FILE A141801.XLS, IOWA VEHICLE, JANUARY 4, 1998 112
TABLE 13-3 SAMPLE DATA FROM ONBOARD COMPUTER DATA FILE
A141801.XLS, MICHIGAN VEHICLE, FEBRUARY 24, 1998..............112

TABLE 13-4 SAMPLE DATA FROM ONBOARD COMPUTER DATA FILE
A13B701.XLS, MINNESOTA VEHICLE, FEBRUARY 5, 1998113

TABLE 14-1 INITIAL PROTOTYPE PROVIDERS, BUDGET, AND SCHEDULE.....120

TABLE 14-2 MELTING CAPACITY OF SALT..121
ACKNOWLEDGMENTS

The authors gratefully acknowledge and thank the pooled fund study team, both public and private sector members, for their technical assistance and cooperation throughout Phase II.

Public sector members included the following agencies:

- Iowa Department of Transportation
- Minnesota Department of Transportation
- Michigan Department of Transportation
- Federal Highway Administration

Private sector members included the following companies:

- Boyer Ford, Minneapolis, Minnesota
- Bristol Company, Broomfield, Colorado
- Component Technology, Des Moines, Iowa
- Federal Signal Corporation, Tinley Park, Illinois
- Foseen Manufacturing & Development, Radcliffe, Iowa
- Global Sensor Systems, Mississauga, Ontario, Canada
- Innovative Warning Systems, Minneapolis, Minnesota
- Monroe Truck Equipment, Monroe, Wisconsin
- Navistar International Corporation, Fort Wayne, Indiana
- O’Halloran International, Des Moines Iowa
- Raven Industries, Sioux Falls, South Dakota
- Roadware Corporation, Paris, Ontario, Canada
- Rockwell International, Cedar Rapids, Iowa
- Sprague Controls, Canby, Oregon
- Tyler Ice (Tyler Industries), Benson, Minnesota

We wish to thank Mr. Lee Smithson, Deputy Director of the Maintenance Division, Iowa Department of Transportation and chairperson of the pooled fund study team; Mr. Ed Fleege, team leader for the Minnesota Department of Transportation; and Mr. Larry White, team leader for the Michigan Department of Transportation, for their teams’ technical support and guidance. We also wish to thank all of the private sector partners for their generous contributions, technical support, and cooperation.

A special thanks to Dr. James C. Wambold, Ph.D., President, CDRM, Inc., for analyzing the friction data and participating in writing this report.