Electric Utility Perspectives on Electric Technologies for Diesel Engine Run-Time Reduction

Mark Duvall
Electric Power Research Institute
Electric Power Research Institute

• Founded in 1973 as a nonprofit research center for the U.S. electric utility industry
• Annual budget of $300M, approximately 700 employees
• Four sectors
 – Generation (fossil, renewable, distributed)
 – Nuclear
 – Environmental
 – Power Delivery and Markets
 • Electric Transportation
• EPRI Industry Reports (free to the public)
 – Electricity Sector Framework for the Future
 http://www.epri.com/corporate/esff/
 – The Electricity Technology Roadmap Initiative
 www.epri.com/corporate/discover_epri/roadmap/
Electric Transportation Research at EPRI

- EPRI has a 25-year history of innovation in advanced vehicles, including:
 - Plug-in hybrids, battery electric vehicles, fuel cell vehicles
 - Advanced battery development, fast charging, component design
 - Modeling and simulation, control system development
 - Engineering, environmental, economic, and market analysis
 - Nonroad ET—electric material handling, TSE, airport GSE
EPRI Objectives

• Conduct credible analyses based on independent, objective operating data and technical information
• Develop new products or technology in collaboration with industry partners
• Conduct demonstration projects in order to:
 – Demonstrate promising new technologies or products
 – Enable market transformation for new products
 • Customer education
 – Collect independent and objective operating data
• Support or facilitate utility participation in TSE projects
 – In-kind funding
• Assist with development of standards and safety procedures and make recommendations to appropriate organizations
EPRI Activities

• Analysis
 – “Truckstop Electrification Study” – October 2001

• Demonstrations
 – Onboard truck equipment with 120VAC Shorepower – EPA Smartway Transportation Grant (EPRI and SMUD)
 – Alabama IdleAire Demonstration Project (EPRI and Alabama Power)
 – Electric Transport Refrigeration Unit economic (Jul-04) and technical (Oct-04) analyses and software tools (EPRI with Southern Calif. Edison and SMUD)
 • Looking for a good eTRU demonstration project
EPRI Initial View of TSE Benefits

<table>
<thead>
<tr>
<th>Parked-Truck Power Option</th>
<th>Investment</th>
<th>Charges / Costs / Savings</th>
<th>Payback Period</th>
<th>NO\textsubscript{X} Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heavy-Duty Diesel Idling
1,831 hrs/year @ 1.5 gal/hr, $1.50/gallon</td>
<td>$0</td>
<td>-$4,120 annual fuel cost only</td>
<td>baseline</td>
<td>225 lbs/year/truck baseline</td>
</tr>
<tr>
<td>On-Board Heating/Cooling w/ Shore Power
1,400 hrs/yr @ 1.5 kW</td>
<td>$2,000 Truck Owner
$1,400/space Truckstop (or Depot)</td>
<td>~$2,450 annual savings - energy
$4 per 8 hrs parking (12 hrs/day use)</td>
<td>1 year
1 year</td>
<td>166 lbs/year/truck avoided
518 lbs/year/space avoided</td>
</tr>
<tr>
<td>Off-Board Electrical Heating/Cooling @ 4 kW
</td>
<td>No investment Truck Owner
~$6,000/space IdleAire
<$200/space Utility</td>
<td>$700 annual savings - energy (700 hrs/yr) see note
~$10 per 8 hrs parking (12 hrs/day use)
17,500 kWh/yr/space</td>
<td>No investment
~2 years
<2 years</td>
<td>77 lbs/year/truck avoided
486 lbs/year/space avoided</td>
</tr>
<tr>
<td>Transport Refrigeration Unit Electric-Standby @ 6-kW load 800 hrs/yr
</td>
<td>$2,600 Trailer Owner
$3,400 / space Truckstop (or Depot)</td>
<td>$4,000 annual savings - energy
$8 per 8 hrs parking (12 hrs/day use)
26,280 kWh/yr/space</td>
<td>8 months
1 year
<2 years</td>
<td>122 lbs/year/trailer
585 lbs/year/space avoided</td>
</tr>
</tbody>
</table>
Insights to Date

• As with our initial study, there are a number of different assumptions and projections for the cost/benefits of TSE

• A primary motivation of our demonstration projects is the collection and dissemination of objective operating data

• Utility and diesel combustion emissions will improve significantly over time, so the value of the pollution benefits are a moving target, but currently high
 – Electric technologies clean up even the oldest equipment

• The benefits of petroleum and greenhouse gas reduction are expected to increase in value

• Transforming traditional industry practice (idling) will take the expected amount of time, as with any new technology
Electric Utility Perspectives

• Each utility is a unique combination of:
 – Generation mix
 – Customer base
 – Geographic locale
 and so on. . .
 – Regulatory environment
 – Economic health
 – Environmental challenges

• However, utilities are interested in TSE, idle reduction
• Primary motivations may include:
 – New load (especially off-peak)
 – Local source emissions reductions
 – Community service
 – Use of electric technologies as customer solutions
Selected Industry Quotes

“An 80-space installation adds 400kW of peak load and can generate about $51,000 per year in new revenue”

“Electric TRU demonstrations are good local source emissions reductions projects. By working with a single organization, we can help ensure that the project achieve its proposed benefits”

Electro-technologies can be important tools for our customers to cost-effectively meet environmental compliance requirements—which is a requirement for the continued health of our customers’ businesses.
Infrastructure and Standards

• The two shorepower techniques are largely compatible
 – Low-power: 120 VAC, 15-20 amp
 – High-power: 240 VAC, 30 amp (or 208 VAC)
 – Installed capacity does affect the infrastructure expense

• TRUs with electric standby are more complex
 – Numerous electrical and connector requirements, up to 480 VAC.
 – Additional safety concerns

• Utilities largely view these installations as another industrial customer. They’ll just hook up power and throw the switch.

• However, one should not assume that all utilities desire load growth.
Summary

• Reducing diesel fuel consumption by displacement with electricity will reduce pollution and greenhouse gas emissions, create jobs, lower the trade deficit and reduce national petroleum dependence

• There is a significant, but not universal, interest in TSE projects at the utilities

• However, revenue may not justify complete funding of a project by a utility
 – Participation more likely as a member of a larger collaboration

• There is a lot of interest in the environmental benefits of TSE technologies and the potential for emissions credit
 – Need more in-use operating data on the various products and technologies