Beyond work zones:
other new safety products

Tom McDonald, Safety Circuit Rider

Many new products like portable speed humps, recycled rubber matting, and retroreflectometers have recently been introduced to improve safety on the nation’s roadways and provide cost-effective means of meeting newly adopted standards, such as minimum retroreflectivity requirements.

Recycled rubber, formed into mats, could result in safer working conditions for many routine maintenance operations. For example, when installed around guardrails, signs, and other locations in high-traffic areas, the rubber mats can reduce the need for erosion control activities and mowing in those areas, thereby decreasing workers’ exposure to the hazards of working in close proximity to fast-moving vehicles.

Another innovation is temporary speed humps, which may increase safety where excessive speed is a concern. They can be used both temporarily and permanently at speeds up to 40 mph. They can be installed relatively quickly by a crew of three and leave reasonably little damage to the roadway when removed, making them attractive for trial use before installing permanent humps. (See the article below for information on borrowing these devices from the Iowa Department of Transportation.)

The Federal Highway Administration’s impending adoption of minimum retroreflectivity standards for signs and pavement markings on all public roadways has increased local agencies’ interest in cost-efficient and effective devices to monitor and document retroreflectivity performance. Several retroreflectometer models that meet these requirements are now available commercially, ranging from large mobile units to small, hand-held models that can take measurements from relatively remote locations.

For more information about any of these products, contact Safety Circuit Rider Tom McDonald, 515-294-6384, tmcdonal@iastate.edu.

If your community would like to try temporary speed humps before installing permanent ones, you may want to participate in the Iowa Department of Transportation’s (Iowa DOT) pilot program and concurrent research study.

The Iowa DOT plans to purchase several temporary speed humps and loan them—no charge—to interested communities. Various models will be available for collector and local roadways with vehicle speeds of 25 and 40 miles per hour. (The temporary speed humps will not be authorized for installation on state primary highways and are not recommended for major arterial streets.)

Installing temporary speed humps can be accomplished with only minor, repairable damage to the roadway pavement and may aid your community in deciding whether to invest in permanent speed humps.

The Center for Transportation Research and Education (CTRE) at Iowa State University will concurrently study any traffic volume changes, speed reductions, and safety impacts that may be attributable to the installations, as well as reactions of motorists and adjacent property owners.

If you would like to try temporary speed humps, CTRE’s study team will help determine the installation design, assist with the installation, and evaluate the impacts of the speed humps before, during, and after installation. The team may also study the application and investigation of multiple speed humps at different spacings along a roadway or within a specific neighborhood.

The Iowa DOT’s program to loan temporary speed humps to local agencies, which is funded by the Iowa Traffic Safety Improvement Program, will continue after CTRE has completed its study. If successful, the pilot program may lead to the Iowa DOT’s purchase of additional temporary speed humps for use by Iowa communities.

For more information, or to express your interest in participating, please contact Keith Knapp, CTRE, 515-294-7082, kknapp@iastate.edu, or Tom Welch, Iowa DOT, 515-239-1267, twelch@max.state.ia.us.
PCC pavement texture that provides traction without noise

For years, many people in the Portland cement concrete (PCC) pavement industry have accepted that noisy roads are a necessary byproduct of pavement surface traction techniques such as transverse tining. Now, new specifications being used by the Iowa Department of Transportation (Iowa DOT) and others show that PCC pavement can provide both adequate traction and a quiet ride. Such PCC pavement surfaces may be just what motorists want.

Texture for traction
Because pavements can become slick when wet, their surfaces are often textured to provide increased friction for improved traction. On low-speed and/or low-volume roads—for example, municipal roads under 45 miles per hour, low-volume county roads, and state roads under 35 miles per hour—a roughened texture is normally created by dragging burlap or coarse carpet (artificial turf) over the surface before the concrete hardens. A broom finish may be used in lieu of or in addition to this finish.

On roads with higher speeds and/or higher traffic volumes—for example, state primary roads—the texture is made deeper to withstand more wear and tear. Tines are constructed by dragging mechanical or hand rakes over freshly laid concrete. Tining provides a longer lasting texture and reduces the water sheeting effect that causes hydroplaning. As a result, tining can help make roads safer.

Tining can be installed longitudinally or transversely. The texture created by transverse tining, however, often creates a whine when vehicles travel across the tines.

“Smooth,” quiet roads are desired
According to a Federal Highway Administration (FHWA) National Quality Initiative survey, “Pavement smoothness is the most significant measure motorists use to judge the quality of our nation’s roads.” In the pavement industry, “smoothness” is related to the condition and quality of roads, not to their surface texture. Motorists, however, judge the “smoothness” of roads not only by their rideability but also by their noise level. Noisy roads—including roads in excellent condition but with textures that cause humming or whining—are perceived negatively.

Several states are researching methods for reducing the noise of textured pavements without reducing traction. A final report on the subject is forthcoming from the Wisconsin Department of Transportation and FHWA.

Efforts in Iowa to decrease road noise
Iowa has demonstrated its commitment to satisfying motorists’ desire for quiet roads. Nine test sections of PCC pavement were built in Iowa in 1993 in an attempt to reduce interior and exterior vehicle noise. The sections included uniform transverse, variable transverse, sawed transverse, diamond ground, and longitudinal textures.

“The [Iowa DOT] took a look at what Wisconsin and some other states were doing, evaluated our own test sections, and found that noise could be reduced using longitudinal or random transverse tining while achieving adequate friction,” says Chris Brakke, pavement design engineer at the Iowa DOT.

As of last year, the Iowa DOT’s new PCC pavements are either tined longitudinally or tined transversely with random spacing. Both methods, with respect to noise, are considered preferable to evenly spaced transverse tining.

Longitudinal tining, as opposed to random transverse tining, “allows you to get the curing compound on quicker—that’s an added benefit,” says Brakke. “But other than that, the choice between the two preferred methods is primarily a matter of what equipment contractors have.” And because highway users want a quiet ride, they are likely to be much more satisfied as they drive across these new PCC pavement surfaces.

For more information
Contact Chris Brakke, 515-239-1882, cbrakke@max.state.ia.us, or Center for Portland Cement Concrete Pavement Technology Director Dale Harrington, 515-294-8103, pccconc@iastate.edu.
GASB 34: establishing a value for infrastructure assets

Tom Maze, Vice President, Howard R. Green Company

Editor's note: This is the fourth article in a series about issues raised for local transportation agencies by Governmental Accounting Standards Board Statement No. 34 (GASB 34). The first article was published in the January–February 2000 issue of Technology News. The entire series, including a longer version of this article, is available on the Center for Transportation Research and Education's GASB 34 website, www.ctre.iastate.edu/gasb34/index.htm.

One of the most complex issues for agencies attempting to comply with GASB 34 is developing objective and consistent procedures for estimating monetary values for infrastructure assets (that is, "capitalizing" assets). Whether an agency chooses to report assets by (1) depreciating their value based on historical costs or (2) using the modified approach outlined in GASB 34 (which applies asset management techniques), ultimately the agency must include the value of its infrastructure assets in its comprehensive financial reports.

Unfortunately, little research has been conducted to develop standardized methods for capitalizing infrastructure assets. In this article, we provide two possible approaches. The first, relatively simple approach applies the perpetual inventory method (PIM) to depreciate the value of highway infrastructure assets through time. The second example is taken from work done by the California Department of Transportation (CalTrans) to capitalize bridges. The CalTrans method is based on engineering measurements of the condition of bridges and requires a bridge management system; such a method would be useful to agencies using GASB 34's modified approach for reporting capital assets.

Perpetual inventory method

The perpetual inventory method, described by Barbara Fraumeni and exemplified in Table 1, is a depreciation method for valuing capital stock that can be applied to transportation infrastructure assets. PIM accounts for annual capital expenditures and assumes that existing capital assets depreciate in value at a standard rate every year.

The following equation estimates the total value of infrastructure assets on a year-by-year basis:

\[
\text{Infrastructure Assets}_{\text{year}} = \text{Capital Investment}_{\text{year}} + (1-r) \times \text{Infrastructure Assets}_{\text{year-1}},
\]

where

- \(\text{Infrastructure Assets}_{\text{year}} \) = the value of infrastructure assets in the current year
- \(\text{Capital Investment}_{\text{year}} \) = the amount of capital investment in infrastructure assets in the current year
- \(r \) = the annual depreciation rate of infrastructure assets
- \(\text{Infrastructure Assets}_{\text{year-1}} \) = the value of infrastructure assets in the year immediately prior to the current year

When using this formula, all capital investments should be expressed in constant dollars so that meaningful comparisons can be made across time. Constant dollars exclude inflation and express dollars in terms of a base year.

Table 1 Perpetual Inventory Method Example

<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th>Capital Investment during Current Year ($)</th>
<th>Infrastructure Assets at the End of Prior Year ($)</th>
<th>Estimated Current Infrastructure Assets ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>1,200,000</td>
<td>100,000,000</td>
<td>101,200,000</td>
</tr>
<tr>
<td>1981</td>
<td>2,500,000</td>
<td>99,155,760</td>
<td>101,655,760</td>
</tr>
<tr>
<td>1982</td>
<td>3,000,000</td>
<td>99,602,314</td>
<td>102,602,314</td>
</tr>
<tr>
<td>1983</td>
<td>1,000,000</td>
<td>100,529,747</td>
<td>101,529,747</td>
</tr>
<tr>
<td>1984</td>
<td>500,000</td>
<td>99,478,846</td>
<td>99,978,846</td>
</tr>
<tr>
<td>1985</td>
<td>800,000</td>
<td>97,959,273</td>
<td>98,759,273</td>
</tr>
<tr>
<td>1986</td>
<td>750,000</td>
<td>96,764,336</td>
<td>97,514,336</td>
</tr>
<tr>
<td>1987</td>
<td>850,000</td>
<td>95,544,546</td>
<td>96,394,546</td>
</tr>
<tr>
<td>1988</td>
<td>700,000</td>
<td>94,447,377</td>
<td>95,147,377</td>
</tr>
<tr>
<td>1989</td>
<td>900,000</td>
<td>93,225,400</td>
<td>94,125,400</td>
</tr>
<tr>
<td>1990</td>
<td>2,500,000</td>
<td>92,224,067</td>
<td>94,724,067</td>
</tr>
<tr>
<td>1991</td>
<td>2,700,000</td>
<td>92,810,640</td>
<td>95,510,640</td>
</tr>
<tr>
<td>1992</td>
<td>2,500,000</td>
<td>93,581,325</td>
<td>96,081,325</td>
</tr>
<tr>
<td>1993</td>
<td>2,400,000</td>
<td>94,140,483</td>
<td>96,540,483</td>
</tr>
<tr>
<td>1994</td>
<td>2,900,000</td>
<td>94,590,365</td>
<td>97,490,365</td>
</tr>
<tr>
<td>1995</td>
<td>2,400,000</td>
<td>95,521,060</td>
<td>97,921,060</td>
</tr>
<tr>
<td>1996</td>
<td>2,200,000</td>
<td>95,943,054</td>
<td>98,143,054</td>
</tr>
<tr>
<td>1997</td>
<td>2,800,000</td>
<td>96,160,564</td>
<td>98,960,564</td>
</tr>
<tr>
<td>1998</td>
<td>2,550,000</td>
<td>96,961,561</td>
<td>99,511,561</td>
</tr>
<tr>
<td>Total</td>
<td>35,150,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Want to learn more about GASB 34? Register for the GASB 34 Educational Conference, August 31, 2000, in Des Moines. This event is cosponsored by the Iowa League of Cities, Iowa State Association of Counties, and CTRE. For more information, see www.ctre.iastate.edu/gasb34/index.htm.
GASB 34 is only one reason to capitalize your transportation infrastructure

Capitalizing infrastructure assets like roads and bridges—that is, assigning a dollar value to them—may be useful beyond complying with GASB 34. For example, in addition to providing information that can be useful to infrastructure asset managers and decision makers, capitalizing transportation infrastructure may be helpful in garnering public and governmental support for transportation infrastructure funding.

Roads and bridges are intended to last for decades; therefore, failure to maintain their value saddles future generations with a deficiency they'll have to pay. The argument that adequate monies must be spent today to maintain the value of infrastructure assets for the next generation has proved to be a powerful and effective one. This stewardship argument has been used with great success by public agencies in other countries (e.g., Australia and New Zealand) to garner increases in funding for their roads and bridges, even when faced with the tough political circumstance of a recession.

Capitalizing roads and bridges allows the public to understand the stewardship issue more clearly. Expressing streets' value in dollar terms is generally more meaningful to people than expressing their value in engineering measures of "condition" or "performance" (e.g., inches of roughness per mile, condition indices, or other measures). This is especially true when year-by-year comparisons are made; the declining dollar value of a city's streets is generally more meaningful to the public than, for example, a reduction in the streets' condition index from 5 to 4. By tracking the dollar value of assets like roads and bridges, an agency may clearly demonstrate whether infrastructure is declining in value faster than new investments or reinvestments are being made.

The example in Table 1 uses 1980 as a base year (as does GASB 34) and 100 million dollars as the base value of all transportation infrastructure assets (streets) in a mock Iowa municipality of 50,000 residents (based on Andrew Lemer's study of typical infrastructure investments). Capital investments, expressed in constant dollars, are allocated during each subsequent fiscal year; Barbara Fraumeni's average depreciation rate for transportation infrastructure assets, 0.0202, is used. To simplify our example, we assume no growth in the highway and street network.

Note that in our example the lower annual capital outlays in the mid to late 1980s result in a decline in the value of capital stock that continues through the next decade, although the decline is arrested through a large increase in capital spending.

Note also that a total capital investment of over 35 million dollars over 19 years is required to maintain the value of existing infrastructure assets at a level somewhat close to the value of those assets in 1980.

CalTrans's approach to valuing infrastructure

Although employing systems for managing assets, like bridge management systems, will generally fulfill GASB 34's modified approach requirements for reporting capital assets, such systems do not provide a method for capitalizing infrastructure assets. CalTrans uses information from its bridge management system to derive the bridge infrastructure values required by GASB 34.

CalTrans manages its bridge network using Pontis (a bridge management system distributed by the American Association of State Highway and Transportation Officials). With Pontis, bridge inspectors regularly inspect and rate the condition of the various elements in each bridge in their network. CalTrans then uses the following equation to determine the value of each bridge element. The formula incorporates both the severity factor and the unit failure cost:

\[
\text{Current element value} = \text{quantity in condition state} \times \text{WF} \times \text{FC},
\]

where \(\text{WF} = \text{severity weighting factor}\)

\(\text{FC} = \text{failure cost of the element (cost to rehabilitate or replace a unit of an element if it fails)}\)

Note that a condition factor of 0 (failed) will always result in a 0 value for that element.

In Table 2, the formula is applied to determine the current value of each element of a bridge. The values of all elements are summed to calculate an estimated value for the entire bridge. Note that the steel girder has 61 meters rated 1 (protected), 34 meters rated 0.75 (exposed), and 5 meters rated 0.5 (attacked). At a replacement value of 3,500 dollars per meter, the total current value of the girder is 311,500 dollars. To obtain a current, network-level measure of "condition" or "performance" (e.g., inches of roughness per mile, condition indices, or other measures), this is especially true when year-by-year comparisons are made; the declining dollar value of a city's streets is generally more meaningful to the public than, for example, a reduction in the streets' condition index from 5 to 4. By tracking the dollar value of assets like roads and bridges, an agency may clearly demonstrate whether infrastructure is declining in value faster than new investments or reinvestments are being made.

The example in Table 1 uses 1980 as a base year (as does GASB 34) and 100 million dollars as the base value of all transportation infrastructure assets (streets) in a mock Iowa municipality of 50,000 residents (based on Andrew Lemer's study of typical infrastructure investments). Capital investments, expressed in constant dollars, are allocated during each subsequent fiscal year; Barbara Fraumeni's average depreciation rate for transportation infrastructure assets, 0.0202, is used. To simplify our example, we assume no growth in the highway and street network.

Note that in our example the lower annual capital outlays in the mid to late 1980s result in a decline in the value of capital stock that continues through the next decade, although the decline is arrested through a large increase in capital spending.

Note also that a total capital investment of over 35 million dollars over 19 years is required to maintain the value of existing infrastructure assets at a level somewhat close to the value of those assets in 1980.

CalTrans's approach to valuing infrastructure

Although employing systems for managing assets, like bridge management systems, will generally fulfill GASB 34's modified approach requirements for reporting capital assets, such systems do not provide a method for capitalizing infrastructure assets. CalTrans uses information from its bridge management system to derive the bridge infrastructure values required by GASB 34.

CalTrans manages its bridge network using Pontis (a bridge management system distributed by the American Association of State Highway and Transportation Officials). With Pontis, bridge inspectors regularly inspect and rate the condition of the various elements in each bridge in their network. CalTrans then uses the following equation to determine the value of each bridge element. The formula incorporates both the severity factor and the unit failure cost:

\[
\text{Current element value} = \text{quantity in condition state} \times \text{WF} \times \text{FC},
\]

where \(\text{WF} = \text{severity weighting factor}\)

\(\text{FC} = \text{failure cost of the element (cost to rehabilitate or replace a unit of an element if it fails)}\)

Note that a condition factor of 0 (failed) will always result in a 0 value for that element.

In Table 2, the formula is applied to determine the current value of each element of a bridge. The values of all elements are summed to calculate an estimated value for the entire bridge. Note that the steel girder has 61 meters rated 1 (protected), 34 meters rated 0.75 (exposed), and 5 meters rated 0.5 (attacked). At a replacement value of 3,500 dollars per meter, the total current value of the girder is 311,500 dollars. To obtain a current, network-level
estimate of the value of its bridges, CalTrans adds together the
evaluations of all bridges in its network.

Summary
In this article we have briefly summarized two methods for tracking
the value of infrastructure assets. Either method would meet
the requirements of GASB 34.

Many engineers and public works directors may view asset man-
agement and GASB 34 requirements as merely an academic exci-
tise or as an activity that may be handled by their agency’s
financial officer. However, we would urge public works profes-
sionals and engineers to become engaged in the financial reporting
of the value of the infrastructure assets they manage. Valuing assets
over time (regardless of the method used) reflects how well infra-
structure stewardship responsibilities were performed. The out-
come could have significant implications on future resources
allocated to the management of infrastructure.

The perpetual inventory method (as well as other depreciation-
based methods) is a fairly simple approach to satisfying GASB 34
requirements. This method, however, provides only very aggre-
gate, policy-level information. CalTrans’s method, although a
more complex process, clearly provides information that is more
useful to infrastructure asset managers and decision makers. The
CalTrans example demonstrates that the process of capitalizing
transportation infrastructure assets can be based on sound engi-
neering practices, using asset-by-asset condition information to
build a value estimate for an agency’s transportation infrastructure
network.

References
Barbara M. Fraumeni, “Strategies for Measuring Productive High-
way Capital Stocks,” presented to the Transportation Research
Board Conference for Information Requirements for Transportation
Economic Analysis, Irvine, California, August 1999.

Andrew C. Lemer, “Asset Management: The Newest Thing or
Same-old, Same-old?” APWA Reporter, June 2000.

Paul D. Thompson and Richard W. Shepard, “AASHTO
Commonly Recognized Bridge Elements: Successful Applications
and Lessons Learned,” presented to the National Workshop on
Commonly Recognized Measures for Maintenance, Scottsdale,
Arizona, June 2000.

Table 2 Bridge Valuation Calculation

<table>
<thead>
<tr>
<th>Element</th>
<th>Calculation</th>
<th>Current Element Value ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete deck</td>
<td>$300 m² x 0.5 x $600</td>
<td>90,000</td>
</tr>
<tr>
<td>Steel girder</td>
<td>[((61 m x 1.0) + (34 m x 0.75) + (5 m x 0.5)) x $3,500]</td>
<td>311,500</td>
</tr>
<tr>
<td>Abutment</td>
<td>24 m x 1.0 x $7,700</td>
<td>184,800</td>
</tr>
<tr>
<td>Column</td>
<td>4 x 1.0 x $9,000</td>
<td>36,000</td>
</tr>
<tr>
<td>Joint seal</td>
<td>24 m x 0.0 x $556</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Total Current Value of Bridge: 622,300

Salvaging railroad flatcars
as low-cost bridges

This article is the first of three exploring bridge replace-
ment alternatives.

Deficient and deteriorating bridges are creating major problems
for both state and local highway agencies throughout the nation.
Iowa is no exception. Iowa has significantly more bridges per
capita than most states, which stresses the available tax dollars for
implementing needed bridge replacements and repairs.

According to the 1999 Bridge Inventory in the November 1999
issue of Better Roads, 21,057 bridges—nearly 84 percent of Iowa’s
total—are located on Iowa’s secondary road system. Of these sec-
ondary road bridges, 31 percent are rated as substandard. There-
fore, much of the responsibility for bridge replacement falls to
Iowa’s county agencies, making it necessary to develop cost-effi-
cient, durable, and easy-to-install options for low-volume roads.

One possible solution
Wayne Klaiber, professor of civil and construction engineering at
Iowa State University (ISU), Terry Wipf, professor of civil and
construction engineering and bridge engineer at ISU’s Center for
Transportation Research and Education, Jim Witt, county engi-
neer for Cerro Gordo and Winnebago counties, and Thomas
Threadgold, a structural engineering graduate student at ISU,
conducted a study sponsored by the Iowa Highway Research
Board on a low-cost bridge alternative that uses salvaged railroad
flatcars (RRFCs) as bridge superstructure.

The research team determined that salvaged RRFCs are a “safe and
feasible bridge alternative” to aid Iowa counties in constructing
short-span bridges for low-volume roads.

RRFC bridges . . . continued on page 12

Construction of the Tama County RRFC bridge.
Photo courtesy of the Tama County engineer’s office.
An overview of salvaged RRFC bridges

Salvaged RRFCs form the superstructure of the bridges. RRFCs are available in various lengths, making it possible to construct bridges of different lengths. The cars can also be joined to create varying bridge widths before being placed on standard abutments. Commonly, the driving surface of the bridge consists of timber planks and metal grating. Salvaged RRFC bridges can be constructed with or without guardrails, depending on location.

After conducting a survey of bridge engineers in the United States and Canada, Klaiber and Wipf determined that states with large rural populations, such as Oklahoma, Texas, Arkansas, Wyoming, and Montana, are most likely to employ salvaged RRFC bridges on county or private roads. Although California uses salvaged RRFCs to create an emergency bridge system, no states report permanent RRFC bridges on state highway systems.

The Iowa research

Wipf and Klaiber worked with former Tama County Engineer Robert Gumbert to test and analyze Iowa’s only salvaged RRFC bridge, located on a rural access road in Tama County. The Tama County bridge consists of two salvaged RRFCs placed side-by-side on timber abutments. Metal grating covers the entire bridge surface, and timber planks spanning the center of the bridge create the driving lane.

According to Gumbert, the Tama County bridge was installed in 1986 to replace a deteriorating bridge. "We looked at the options of closing the road, building a new bridge, installing culverts, or using [salvaged] railroad flat cars. We decided that railroad cars were the best option," Gumbert said.

The research team created computer models and field-tested the Tama County bridge to determine strains in the bridge with and without connections between the flatcars. The field tests indicate that connections have minimal influence on the behavior of the bridge.

Both the theoretical and experimental data collected by the research team suggest that RRFCs are structurally adequate as a bridge superstructure, and that the Tama County bridge is capable of carrying legal Iowa highway loads.

"[During the research team's load testing,] the [Tama County] bridge turned out much stronger than anyone thought it would," Gumbert explains.

Salvaged RRFC bridge safety

Klaiber foresees no difficulty with the use of salvaged RRFC bridges and emphasizes the safety of these structures. "Properly engineered, railroad flatcar bridges are fine structures, and there is no danger to the public," he explains.

Salvaged RRFC bridges employ only railroad cars that have sustained no damage during railroad use and have not reached the age for mandatory retirement. The cars used in bridge construction have been retired for economic reasons. That is, their repair costs have become exorbitant, or they have been replaced by cars with more cost-effective designs.

Gumbert also expresses the safety of RRFCs. "Railroad flatcars are designed to carry tremendous loads, and that makes them very strong as bridges," he says. Salvaged RRFCs experience significantly reduced loads as bridges than the 50 to 100 tons they were designed for.

Benefits of salvaged RRFC bridges

Salvaged RRFC bridges are low maintenance and can span various lengths. Their primary benefits, however, are low cost and quick installation.

Skipp Gibbs Company, a California company specializing in ready-to-install bridge superstructures, estimates savings between 30 and 70 percent of the cost of conventional bridges. The low cost results from installation speed, ease of design, long life, low maintenance, and length of span.

"Railroad flatcar bridges are cheap, quick, and very strong," Gumbert says of his experience with the Tama County bridge. He estimates the time to install the salvaged RRFC at about a day. The abutments were installed beforehand.

Reactions

Gumbert and the Tama County engineer's office would not hesitate to use RRFC bridges in the future. "Since [the installation of the Tama County RRFC bridge], we have always thought it was an attractive option, but we have not run across another good location," Gumbert says.

According to Gumbert, the public has also reacted favorably to the salvaged RRFC bridge. "The people that use the bridge are happy to have a bridge that is wider and stronger than the previous bridge," he explains.

For more information

For information about Iowa’s research, contact Terry Wipf, 515-294-6979, wipf@iastate.edu, or Wayne Klaiber, 515-294-8763, klaiber@iastate.edu. For information on the Tama County bridge, contact the Tama County engineer’s office, 515-484-3341.

To obtain a copy of the research team’s final report to the Iowa DOT, Use of Railroad Flatcars for Low-Volume Road Bridges, funded by the Iowa Highway Research Board, TR-421, or the December 1991 report, Bridges Constructed from Railroad Cars, conducted for the Arkansas State Highway and Transportation Department by Thomas J. Parsons of Arkansas State University, contact Stan Ring, CTRE’s library coordinator, 515-294-9481, sring@iastate.edu.
On June 15, 2000, the Great River Road and the Loess Hills Scenic Byway officially became Iowa’s first National Scenic Byways.

The National Scenic Byways Program was created to preserve and protect the nation’s scenic byways while promoting tourism and economic development.

Through a “grass roots” application process, byways receive designation following review by a panel of experts. Byways are selected based on their important scenic, natural, historical, cultural, archaeological, or recreational qualities. Corridor management plans incorporate how the byway organization will preserve and protect the intrinsic qualities of the byway.

About 25 million dollars is available for the byways annually. However, no specific funding amount is given to any state; instead, funding is distributed in response to applications with priority given to projects consistent with the byway’s corridor management plan.

East and west:
Iowa is bordered by new National Scenic Byways

The Great River Road tracks the Mississippi River for 326 miles from Iowa’s northern to southern borders. The Loess Hills Scenic Byway winds 220 miles in seven counties through the unique landscape along the eastern edge of the Missouri River Valley.

For more information on Iowa’s National Scenic Byways or the National Scenic Byways Program, contact Jan Thompson, Iowa Division, Federal Highway Administration, 515-233-7324, or Margaret Roetman, Iowa Department of Transportation’s Scenic Byway Coordinator, 515-239-1792, or visit National Scenic Byways Online, www.byways.org.

CTRE welcomes new writer/editor

Mark Anderson-Wilk joins the publication team at the Center for Transportation Research and Education. Mark comes from the University of Chicago Press, where he was an editor at the Astronomical Journal. His specialization has been in editing technical and scientific manuscripts. He earned his MA degree in English at the University of Minnesota.

Mark will be writing articles for various publications, including Technology News, and editing reports and software manuals.

Staff snafu

In April we introduced CTRE’s newest transportation engineer, Gary Thomas. The article incorrectly stated that Gary was originally from Minnesota. Actually, he hails from Wisconsin.

Sorry for the slip, Gary.
THE LOCAL TECHNICAL ASSISTANCE PROGRAM (LTAP) library at the Center for Transportation Research and Education has some great new videos, a few of which are described below. You can borrow these or other library materials any of three ways:

- Order online at www.ctre.iastate.edu/Outreach/ltap/library/search.cfm.
- Use the order form of the back of this newsletter.
- Contact Stan Ring, library coordinator, 515-294-9481, sring@iastate.edu.

V 628 Mini-Roundabouts: Getting Them Right—Parts I and II. This video was taped at a seminar by Clive Sawers, a British designer and expert on roundabouts. He explains the history and development of traffic circles and their evolution to roundabouts, with considerable details about the fundamentals of roundabouts operations.

V 629 I-70/Vail Road. This video is about North America’s first roundabout interchange. It shows the interchange operating with little delay during peak Christmas vacation tourist traffic. It also shows how ramp and frontage road interchanges were converted, increasing capacity by over 50 percent.

V 630 Non-Conforming Traffic Circle Becomes Modern Roundabout. This video, produced for the California Department of Transportation, explains the conversion of an old 470-foot–diameter non-conforming traffic circle into a modern roundabout. It carries 5,000 vehicles per hour, has reduced accidents, and has improved operations to level of service A, making it one of the most efficient high-capacity intersections in the United States.

V 631 Snow at Roundabouts. This video shows footage in Norway before the 1994 winter Olympics with modern roundabout interchanges under deep snow.

V 632 Modern Roundabouts. This video explains the difference between modern roundabouts and nonconforming traffic circles and gives advantages of disadvantages of modern roundabouts compared to signalized cross intersections. It includes high-capacity roundabouts, mini-roundabouts, and modern roundabout interchanges.

V 633 Designing Neighborhood Streets. This video includes presentations at the International Conference on Transportation and Sustainable Communities held March 23–26, 1997.

V 625 Danger Signs. This video contains footage of the trial of sign vandals who removed a stop sign as a prank. As a result of the vandals’ prank, three 18-year-old boys drove through an intersection and were struck and killed by an eight-ton truck.

V 634 Modern Roundabouts. This video explains the difference between modern roundabouts and nonconforming traffic circles and gives advantages of disadvantages of modern roundabouts compared to signalized cross intersections. It includes high-capacity roundabouts, mini-roundabouts, and modern roundabout interchanges.

V 635 Designing Neighborhood Streets. This video includes presentations at the International Conference on Transportation and Sustainable Communities held March 23–26, 1997.

Eliminating leaning sign posts

In his new position as traffic control technician with the Clinton County Highway Department, Raymond Myers uses a large truck with a hydraulic boom and auger to install signposts. Using the auger to dig a straight hole and then installing a post is easy, but compacting the soil enough to keep the post straight has been a challenge. With all the precipitation in Clinton County earlier this year, more rain and wind easily make a newly installed post lean inside its eight-inch hole where the soil has been disturbed, even with the addition of gravel or lime.

To alleviate this problem, Myers invented a receiver for the post. Mounted to the underside of the hydraulic boom, the receiver allows him to push posts into the ground. With the soil undisturbed, posts stay straight.

Tip... continued on page 15
July 2000

25 Motor Grader Operator Workshop Cherokee Sharon Prochnow 515-294-3781, prochnow@iastate.edu

August 2000

8 Motor Grader Operator Workshop Mason City Sharon Prochnow 515-294-3781, prochnow@iastate.edu
8–11 Work Zone Safety Workshops for Utilities Sioux City Tom McDonald 515-294-6384, tmcdonal@iastate.edu
16 DOT Flagger Training Red Oak Tom McDonald 515-294-6384, tmcdonal@iastate.edu
17 DOT Flagger Training Council Bluffs Tom McDonald 515-294-6384, tmcdonal@iastate.edu
31 GASB 34 Educational Conference Des Moines David Plazak 515-294-8103, dplazak@iastate.edu

September 2000

6 DOT Flagger Training Cedar Rapids Tom McDonald 515-294-6384, tmcdonal@iastate.edu
7 DOT Flagger Training Cedar Rapids Tom McDonald 515-294-6384, tmcdonal@iastate.edu
12–13 Iowa Maintenance Training Expo Ames Duane Smith 515-294-8103, desmith@iastate.edu
14 Snow Plow Roadeo and Motor Grader Roadeo Ames Duane Smith 515-294-8103, desmith@iastate.edu

October 2000

11 DOT Flagger Training Davenport Tom McDonald 515-294-6384, tmcdonal@iastate.edu
12 DOT Flagger Training Peosta Tom McDonald 515-294-6384, tmcdonal@iastate.edu
19 Iowa Secondary Road Maintenance Supervisors Association Ames Sharon Prochnow 515-294-3781, prochnow@iastate.edu
26–27 Iowa Traffic Control and Safety Association Annual Conference/25th Anniversary Celebration Ames Tom Welch 515-239-1267
31–Nov 1 Iowa DOT Highway Safety Networking Council Bluffs Tom Welch 515-239-1267

Ray Myers's hydraulic boom-mounted receiver for installing sign posts (perspective is from below the receiver).

TIP... continued from page 14

The receiver is constructed of a piece of four-inch square tubing, six inches long, cut at the corners and flared slightly. The attaching piece is triangular and welded to a cover plate with a 1.25-inch hole to accept a bolt and nut. After installing the post into the receiver, a small hole accepts a light nail for holding the post; this allows the unit to be swung into position. The unit can swing in and out and hangs straight, making it easier to insert the post into the ground straight. If corrections need to be made in the other direction, the swing feature of the boom can do that. The knuckle boom allows positioning of the post.

For more information about the post receiver, contact Raymond Myers, 319-659-8230. •
WWI trucks and Iowa’s highway commission

Stan Ring, CTRE’s Library Coordinator

Following the armistice of World War I, the US Army made surplus vehicles available to the Iowa State Highway Commission (ISHC). According to the February-March 1920 ISHC Service Bulletin, Iowa received 578 War Department trucks, ambulances, and motor cars; 572 of the vehicles were new. The value was estimated at 2.5 million dollars.

More than half the vehicles were distributed to the counties. The ISHC kept 272 of them. These trucks were modified to serve as snow plows and graders and to perform other maintenance services.

To store the vehicles, ISHC leased a tract of land on the south side of Lincoln Highway and west of Grand Avenue in Ames. Four buildings were erected at a cost of 43,000 dollars to serve as storage buildings and repair shops. The 1920 ISHC annual report noted that at least four more buildings were needed.

Later, through donations, the people of Ames were able to purchase the land and give it to ISHC with the contingency that its headquarters remain there. Some of the original buildings are still in use as offices at today’s Iowa Department of Transportation.

Update your address/order library materials

- Add the following name/address to the Technology News mail list.
- Correct the name and/or address below on the Technology News mail list.
- New or corrected mailing information:
 - Name __
 - Title ___
 - Address ___
 - City/State/Zip __
 - Organization __
- Delete the name/address below from the Technology News mail list.
- Send the following library materials to the address below (or the corrected address above) (when ordering, include publication or video title and number): __

- Send a complete library catalog to the address below (or the corrected address above).