3.2 COMPOST FILTER BERMS

Figure 3.4. Berm (Source: Urban Resources and Borderland Alliance Network)

Overview

Description: A temporary or permanent ridge of soil located in such a manner as to channel water to a desired location.

Problem identification: Sheet and gully erosion occurs on slopes where runoff velocities and outlet locations are not controlled.

Design purpose: To prevent runoff from going over the top of a cut and eroding the slope; may be used to direct runoff away from a construction site, divert clean water from a disturbed area, or reduce the size of a drainage area.

Associated practices:Requires adequate down drains to dispose of runoff when used on slopes.

Installation: Compaction of the soil is necessary. The minimum recommended grade is 1%. As soon as the compost filter berm is completed, it should be fertilized, seeded, and mulched. Earth berms shall have an outlet that functions with a minimum of erosion. The runoff shall be conveyed to a sediment trapping device.

<table>
<thead>
<tr>
<th>Slope</th>
<th>Slope length</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%–2%</td>
<td>125’</td>
</tr>
<tr>
<td>2%–5%</td>
<td>75’</td>
</tr>
<tr>
<td>5%–10%</td>
<td>50’</td>
</tr>
</tbody>
</table>

Maintenance/inspection: Inspect after each precipitation event for erosion. Repairs must be done after each precipitation event. The outlets always need protection. Vegetation provides the best protection.

Design life: Six months.

Estimated cost: $2.80 per linear ft for small compost filter berms (2004); $8.40 per linear ft for large compost filter berms.
Figure 3.5. Temporary berms (Source: West Virginia DOT)
Figure 3.6. Temporary berm and temporary slope drain system (Source: Department of Civil, Construction, and Environmental Engineering, Iowa State University)