STATES’ SUCCESSFUL PRACTICES
WEIGH-IN-MOTION HANDBOOK

prepared for

FEDERAL HIGHWAY ADMINISTRATION

prepared by

Center for Transportation Research and Education
Iowa State University

with
Major Contributions
by
Arkansas State Highway and Transportation Department
California Department of Transportation
Minnesota Department of Transportation
Missouri Department of Transportation
Oregon Department of Transportation

December 15, 1997
Table of Contents

I. ACKNOWLEDGMENTS .. vii

II. LIST OF FIGURES .. ix

III. LIST OF TABLES .. xi

IV. LIST OF “TRICKS OF THE TRADE” .. xiii

SECTION 1. PURPOSE OF THE HANDBOOK ... 1-1

1.1 ESTABLISH SYSTEM REQUIREMENTS .. 1-2
1.2 BUDGET FOR THE RESOURCES NECESSARY TO SUPPORT SITE DESIGN LIFE AND ACCURACY REQUIREMENTS ... 1-2
1.3 DEVELOP AND MAINTAIN A QUALITY ASSURANCE PROGRAM 1-2
1.4 ESTABLISH WEIGH-IN-MOTION EQUIPMENT WARRANTY 1-2
1.5 MANAGE SYSTEM INSTALLATION .. 1-2
1.6 CONDUCT PREVENTATIVE AND CORRECTIVE MAINTENANCE 1-2

SECTION 2. TRAFFIC MONITORING .. 2-1

SECTION 3. WEIGH-IN-MOTION SYSTEM DISCUSSION ... 3-1

3.1 ESTABLISH SYSTEM REQUIREMENTS ... 3-3
3.2 ECONOMIC ANALYSIS ... 3-3
3.3 BENDING PLATE .. 3-7
 3.3.1 Sensor ... 3-7
 3.3.2 Site Processor ... 3-9
 3.3.3 Remote Communication Modem ... 3-9
 3.3.4 Operating Software .. 3-9
 3.3.5 Data Output Format .. 3-10
3.4 PIEZOELECTRIC SENSORS ... 3-10
 3.4.1 Sensor ... 3-10
 3.4.2 Site Processor ... 3-11
 3.4.3 Remote Communication Modem ... 3-12
 3.4.4 Operating Software .. 3-12
 3.4.5 Data Output Format .. 3-13
3.5 LOAD CELL .. 3-13
 3.5.1 Sensor ... 3-13
 3.5.2 Site Processor ... 3-13
 3.5.3 Remote Communication Modem ... 3-14
 3.5.4 Operating Software .. 3-15
 3.5.5 Data Output Format .. 3-15
SECTION 4. SITE DISCUSSION .. 4-1

4.1 SITE SELECTION .. 4-2
4.2 GEOMETRIC DESIGN .. 4-2
4.2.1 Horizontal Curvature 4-2
4.2.2 Roadway Grade ... 4-3
4.2.3 Cross Slope .. 4-3
4.2.4 Lane Width ... 4-3
4.3 PAVEMENT CONDITION 4-3
4.4 SITE LOCATION ... 4-5
4.4.1 Availability of Access to Power and Phone 4-5
4.4.2 Adequate Location for Controller Cabinet 4-5
4.4.3 Adequate Drainage 4-5
4.4.4 Traffic Conditions 4-6

SECTION 5. SYSTEM INSTALLATION 5-1

5.1 OBJECTIVES OF “SUCCESSFUL PRACTICES” INSTALLATIONS 5-1
5.2 WEIGH-IN-MOTION SYSTEM INSTALLATION 5-2
5.3 BENDING PLATE INSTALLATION PROCESS 5-3
5.3.1 Preparing the Road 5-3
5.3.2 Excavating the Pit Area 5-3
5.3.3 Frame Installation .. 5-3
5.3.4 Final Test .. 5-5
5.4 PIEZOELECTRIC SENSOR INSTALLATION PROCESS 5-7
5.4.1 Initial Test ... 5-8
5.4.2 Sensor Layout and Slot Cutting 5-8
5.4.3 Alternative Installation Procedure 5-9
5.5 LOAD CELL INSTALLATION PROCESS 5-10
5.5.1 Initial Test .. 5-10
5.5.2 Preparing the Road 5-10
5.5.3 Installing the Load Cell Scale 5-13

SECTION 6. SYSTEM CALIBRATION 6-1

6.1 CALIBRATION PROCEDURE 6-1
6.2 CALTRANS SUCCESSFUL PRACTICE: CALIBRATION PROCEDURE FOR BENDING PLATE WEIGH-IN-MOTION 6-1
6.2.1 Acceptance Testing 6-2
6.2.1.1 System Component Operation 6-2
6.2.1.2 Initial Calibration 6-2
6.2.1.3 Seventy-Two-Hour Continuous Operation 6-6
6.2.2 Fine Tuning or Recalibration 6-6
6.3 MINNESOTA DEPARTMENT OF TRANSPORTATION SUCCESSFUL PRACTICE: AUTOMATIC SYSTEM RECALIBRATION PROCEDURE . 6-7
SECTION 7. WEIGH-IN-MOTION ACCURACY AND QUALITY ASSURANCE
RELATED TO PROBLEMS OCCURRING AT THE WIM SITE 7-1

7.1 LONG TERM PAVEMENT PERFORMANCE PROCEDURE 7-1
7.2 VEHICLE TRAVEL INFORMATION SYSTEM SOFTWARE 7-1
7.3 CALTRANS SUCCESSFUL PRACTICE: QUALITY
ASSURANCE PROGRAM .. 7-2
 7.3.1 “Knowledge of Site Characteristics” Review 7-6
 7.3.2 “Real Time” Review 7-8
 7.3.3 First Level Data Review - Summary Report 7-12
 7.3.4 First Level Data Review - Individual Truck Report 7-21
 7.3.5 Second Level Data Review 7-28

SECTION 8. SITE MAINTENANCE 8-1

 8.1 CORRECTIVE MAINTENANCE 8-1
 8.2 PREVENTATIVE MAINTENANCE 8-1
 8.2.1 Weigh-in-Motion Sensor Operation 8-3
 8.2.2 Loop Operation 8-3
 8.2.3 Weigh-in-Motion Electronics and Equipment Functions ... 8-3
 8.2.4 System Maintenance and Cleaning 8-3
 8.2.5 Visual Inspection of Site 8-3
 8.2.6 Software Maintenance 8-3

SECTION 9. SYSTEM TROUBLE-SHOOTING 9-1

 9.1 LOGICAL TROUBLE-SHOOTING PROCESS 9-1
 9.2 REQUIRED RESOURCES 9-1

REFERENCE LIST

APPENDICES

 APPENDIX 1 Relevant State Documents
 California Procurement Documents
 California Maintenance Contract
 APPENDIX 2 Long Term Pavement Performance
 Instructions for Cost Estimate Spreadsheet
I. ACKNOWLEDGMENTS

The Center for Transportation Research and Education at Iowa State University would like to acknowledge the following people for their major contributions and sharing their “Successful Practices” and “Tricks of the Trade”:

Rich Quinley
California Department of Transportation
Mail Stop 36
1120 N Street
Sacramento, CA 95814
rquinley@trmx3.dot.ca.gov

Curtis Dahlin
Minnesota Department of Transportation
395 John Ireland Boulevard
Mail Stop 450
St. Paul, MN 55155
(612) 296-6846

Allan Heckman
Missouri Department of Transportation
P.O. Box 210
2103 Missouri Boulevard
Jefferson City, MO 65102
heckma@mail.modot.state.mo.us

Kenneth Evert
Oregon Department of Transportation
Motor Carrier Branch
550 Capitol St. NE
Salem, OR 97310-1380
ken.evert@state.or.us
II. LIST OF FIGURES

Figure 3.1 Example of Bending Plate System Layout (Adapted from International Road Dynamics graphic) ... 3-8
Figure 3.2 Example of Piezoelectric System Layout (Adapted from International Road Dynamics graphic) .. 3-11
Figure 3.3 Example of Load Cell System Layout (Adapted from International Road Dynamics graphic) .. 3-14
Figure 4.1 Use of Profilograph to Measure Road Roughness (Oregon DOT) 4-4
Figure 5.1 Installed Bending Plate Scale (California DOT) 5-6
Figure 5.2 Positioning and Painting of Sensor Templates (Missouri DOT) 5-8
Figure 5.3 Pavement Grinding (Oregon DOT) 5-10
Figure 5.4 Installed Load Cell Scale (Oregon DOT) 5-13
Figure 6.1 Sample WIM Calibration Worksheet (California DOT) 6-3
Figure 6.2 Sample Gross Weight Percent Error by Vehicle Speed Graph (California DOT) 6-5
Figure 7.1 “Knowledge of Site Characteristics” Review Flowchart (California DOT) 7-7
Figure 7.2 “Real Time” Review Flowchart (California DOT) 7-10
Figure 7.3 "Real Time" Review Example (California DOT) 7-11
Figure 7.4 First Level Data Review - Summary Report Flowchart (California DOT) ... 7-15
Figure 7.5 Distribution of Vehicle Classification by Hour of Day (California DOT) 7-16
Figure 7.6 Distribution of Classification and Speed Counts by Lane (California DOT) 7-17
Figure 7.7 Distribution of Speed by Vehicle Classification (California DOT) 7-18
Figure 7.8 Distribution of Vehicle Classification by Hour of Day (California DOT) .. 7-19
Figure 7.9 Distribution of Vehicle Counts by Hour of Day by Lane (California DOT) ... 7-20
Figure 7.10 First Level Data Review - Individual Truck Report Flowchart (California DOT) 7-24
Figure 7.11 Distribution of Weight Violations and Invalid Measurements for Vehicle Classes 4-15 (California DOT) 7-25
Figure 7.12 Distribution of Truck Record Data by Lane (California DOT) 7-26
Figure 7.13 Sample Log Sheet (California DOT) 7-27
Figure 7.14 Second Level Data Review Flowchart (California DOT) 7-31
Figure 7.15 Distribution of Gross Weight by Lane (California DOT) 7-32
Figure 7.16 Distribution of Gross Weight by Lane (California DOT) 7-33
Figure 7.17 Distribution of Average Weights and Spacings by Speed (California DOT) 7-34
Figure 7.18 Distribution of Average Weights and Spacings by Speed (California DOT) 7-35
III. LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>General Guiding Principles Checklist</td>
<td>1-1</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>WIM System Principles Checklist</td>
<td>3-1</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>ASTM WIM System Classification (ASTM Standard E 1318-94)</td>
<td>3-2</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Functional Performance Requirements for WIM Systems (ASTM Standard E 1318-94)</td>
<td>3-3</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Cost Comparison of WIM Systems (Taylor and Bergan, IRD)</td>
<td>3-4</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>Example of Weigh-in-Motion Costs (LTPP, Halenbeck)</td>
<td>3-5</td>
</tr>
<tr>
<td>Table 3.6</td>
<td>Summary of Example Weigh-in-Motion Costs LTPP, Halenbeck)</td>
<td>3-7</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>WIM Site Principles Checklist</td>
<td>4-1</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>ASTM Standard (E 1318-94) Geometric Design Requirements</td>
<td>4-2</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Installation Principles Checklist</td>
<td>5-2</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>Bending Plate Installation Checklist (International Road Dynamics)</td>
<td>5-4</td>
</tr>
<tr>
<td>Table 5.3</td>
<td>Piezoelectric Sensor Installation Checklist (International Road Dynamics)</td>
<td>5-7</td>
</tr>
<tr>
<td>Table 5.4</td>
<td>Load Cell Installation Checklist (International Road Dynamics)</td>
<td>5-11</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>System Calibration Principles Checklist</td>
<td>6-1</td>
</tr>
<tr>
<td>Table 6.2</td>
<td>Caltrans Functional Requirements (California DOT)</td>
<td>6-6</td>
</tr>
<tr>
<td>Table 6.3</td>
<td>Example Automatic Recalibration Values (Minnesota DOT)</td>
<td>6-7</td>
</tr>
<tr>
<td>Table 6.4</td>
<td>Example of Recalibration Procedure (Minnesota DOT)</td>
<td>6-8</td>
</tr>
<tr>
<td>Table 6.5</td>
<td>Minnesota Department of Transportation Adjustment Factors</td>
<td>6-9</td>
</tr>
<tr>
<td>Table 6.6</td>
<td>Example of Recalibration Results (Minnesota DOT)</td>
<td>6-9</td>
</tr>
<tr>
<td>Table 7.1</td>
<td>Quality Assurance Principles Checklist</td>
<td>7-3</td>
</tr>
<tr>
<td>Table 7.2</td>
<td>California Classification Scheme (California DOT)</td>
<td>7-5</td>
</tr>
<tr>
<td>Table 8.1</td>
<td>Caltrans Successful Practice: Field Maintenance Checklist (California DOT)</td>
<td>8-2</td>
</tr>
<tr>
<td>Table 9.1</td>
<td>Trouble-Shooting Principles Checklist</td>
<td>9-1</td>
</tr>
</tbody>
</table>
IV. LIST OF “TRICKS OF THE TRADE”

“Tricks of the Trade” are written in italics throughout the document. The pencil to the left is used to further emphasize their location. The “Tricks of the Trade” are numbered and titled for listing purposes.

4.1 WIM Site Selection (California DOT) ... 4-1
4.2 Axle Weight Transfer and Roadway Grade (California DOT) 4-3
4.3 Pavement Condition (California DOT) .. 4-4
5.1 Installation (California DOT) .. 5-1
5.2 Sensor Test (California DOT) .. 5-2
5.3 Frame Installation (California DOT) .. 5-3
5.4 Conduit and Drain (California DOT) ... 5-5
5.5 Leveling (California DOT) .. 5-5
5.6 Lead Wires (California DOT) .. 5-5
5.7 Slot Condition (International Road Dynamics) 5-8
5.8 Knowledge of Epoxy Properties (Arkansas State Highway and Transportation Department) ... 5-9
6.1 Practical Calibration (California DOT) .. 6-2
6.2 Data Analyst (California DOT) .. 6-6
7.1 Knowledge (California DOT) .. 7-2