Popcorn ball pavement: Pervious concrete and porous asphalt

Porous pavements—generally known as pervious concrete or porous asphalt—are designed for water to drain through them.

Cores of these pavements have a texture like popcorn balls (figure 1). Just as candy syrup binds popcorn together but leaves plenty of holes to sink your teeth into, cement paste or asphalt binder glues aggregate together but leaves a system of connected voids that allows water to percolate through the slab.

The idea of porous pavements may seem counter-intuitive. Most pavements are designed to be as impermeable as possible to restrict the entry of water, chemicals, and other liquids that could damage the slab.

However, porous pavement systems can provide unique service features. Designers should understand porous systems’ potential advantages, critical design and construction considerations, potential challenges, and limited applications.

Why porous?
Porous pavement systems can provide some advantages:

Increased safety. When water drains through a slab instead of flowing across it, the pavement surface dries more quickly and less snow and ice are likely to collect on it. As a result, porous pavements can provide improved traction for both vehicles and pedestrians. They can also reduce spray from trucks and glare from wet pavement surfaces and provide a quieter ride. (Note: These potential benefits can result from full porous pavement systems, as described on page 2, and from thin, open-graded friction courses.)

Potentially lower overall costs. In some applications, porous pavement systems may eliminate the need for and/or reduce the costs of underground storm drainage, curb and gutter systems, and/or detention basins.

Reduced environmental impact. Porous pavement systems can help manage storm water runoff and mitigate its environmental effects. They do this by reducing the volume of direct runoff that can contribute to flooding and erosion.

Ground water improvements. Porous pavement systems potentially increase the volume of storm water that percolates down through the ground, replenishing ground water aquifers with naturally filtered water.

Active hazardous materials management. During rain events, pavement surface residues—oil and other fluid drip from vehicles, accidental spills of materials like pesticides or herbicides, etc.—are carried into the porous system’s infiltration or recharge areas where any hazardous materials can begin to biodegrade naturally.

Generally, 90 percent of rain water–borne pollutants are found in the first 1½ inches of rainfall runoff. In Iowa, where 90 percent of all rain events produce less than two inches of rain, porous pavement systems can filter out most rain water–borne pollutants.

Figure 1. A “popcorn ball” textured sample of pervious concrete.
Improved paved environment. Porous pavement systems are generally quieter and cooler than traditional pavements. The connected pores that channel water away from the surface also deflect traffic noises downward and over a greater area, effectively absorbing sounds.

Air also circulates through the connected pores. On hot days, the air over the pavement—and the pavement itself—is generally cooler than in traditional pavement environments. This can be especially important in cities where sunlight reflected from buildings and pavements causes urban heat islands.

Design features
In a porous asphalt system, the process and materials for developing the asphalt slab are generally the same as for conventional hot mix asphalt (HMA) pavements, but porous asphalt contains less sand and isn’t rolled—compacted—as heavily as conventional HMA. Like conventional HMA, porous asphalt is recyclable.

In a pervious concrete system, the concrete slab is composed of coarse aggregate (but little or no fine aggregate), cement, water, and specially formulated admixtures, commonly polypropylene fibers. The only special equipment required is a vibratory screed. Like porous asphalt, pervious concrete can be crushed and recycled.

The surface pavement layer—the concrete or asphalt slab itself—is only one element in a porous pavement system. Other critical elements of the system include an aggregate recharge bed, lined with a geotextile filter:

- Under the porous slab is a recharge or infiltration bed of uniformly graded aggregate with a high proportion of voids. The bed temporarily stores rainwater that flows through the porous slab, enhancing in situ bioremediation of contaminants.
- A special geotextile filter fabric lines the recharge bed, separating the aggregate from the soil below. The fabric allows water to slowly infiltrate into the underlying soil, while preventing fine materials from entering the recharge bed.

Only well-designed and well-constructed porous pavement systems, with all three of these elements, have the potential to deliver the benefits listed above (figure 2).

Reports of long-term installations of porous pavement systems indicate that they can perform as designed up to 30 years or more. Some porous pavement systems have been over-designed—sometimes by a factor of 100—to address concerns that the surface layer (the porous slab) will freeze, causing surface ice to form. In fact, the aggregate filtration layer typically contains any water that might freeze.

Limitations
Several factors can limit the type and number of applications for which porous pavement systems are appropriate:

Potentially higher initial cost. Porous pavement systems may cost more to construct than traditional pavement systems because of expenses related to constructing the required recharge beds and fabric filters. These higher costs may be offset, however, by reduced expenditures for other storm water management features like sewers, land set-asides, and detention ponds.

Road bed preparation. The top 6 inches of subgrade must be granular material with less than 10 percent silt or clay. This requirement generally results in special road bed preparation.

Load-bearing strength. If cost were not an issue, both pervious concrete and porous asphalt pavement systems could be designed to meet nearly any specifications, including flexural or compressive strength. In reality, to be cost effective, porous pavement systems are generally designed to support four-wheel vehicles but not larger commercial vehicles, limiting their potential applications.

Other design limitations. In addition to load-bearing strength, a porous pavement system design must accommodate several other factors:

- Site-specific design factors:
 - Depth to water table. (Porous...
Since the early 1970s, it has been common practice in Iowa to apply a thin (generally 2–3 inch) surface layer of porous asphalt on asphalt pavements where vehicle skidding and/or hydroplaning is a potential problem. Such open-graded friction courses allow storm water to filter off the surface quickly, improving friction and reducing spray and glare.

To meet new requirements for managing storm water runoff, more pavement designers in Iowa are considering possible applications of porous asphalt pavement systems. Several systems have been constructed, including two parking lots at the Luther Park Center in Des Moines, installed in 2005, and a parking lot at the Prairie Ridge Sports Complex in Ankeny, installed in summer 2006. These relatively new projects are performing as expected.

Porous asphalt applications in Iowa

Since the early 1970s, it has been common practice in Iowa to apply a thin (generally 2–3 inch) surface layer of porous asphalt on asphalt pavements where vehicle skidding and/or hydroplaning is a potential problem. Such open-graded friction courses allow storm water to filter off the surface quickly, improving friction and reducing spray and glare.

To meet new requirements for managing storm water runoff, more pavement designers in Iowa are considering possible applications of porous asphalt pavement systems. Several systems have been constructed, including two parking lots at the Luther Park Center in Des Moines, installed in 2005, and a parking lot at the Prairie Ridge Sports Complex in Ankeny, installed in summer 2006. These relatively new projects are performing as expected.

Porous asphalt applications in Iowa

Since the early 1970s, it has been common practice in Iowa to apply a thin (generally 2–3 inch) surface layer of porous asphalt on asphalt pavements where vehicle skidding and/or hydroplaning is a potential problem. Such open-graded friction courses allow storm water to filter off the surface quickly, improving friction and reducing spray and glare.

To meet new requirements for managing storm water runoff, more pavement designers in Iowa are considering possible applications of porous asphalt pavement systems. Several systems have been constructed, including two parking lots at the Luther Park Center in Des Moines, installed in 2005, and a parking lot at the Prairie Ridge Sports Complex in Ankeny, installed in summer 2006. These relatively new projects are performing as expected.

Porous asphalt applications in Iowa

Since the early 1970s, it has been common practice in Iowa to apply a thin (generally 2–3 inch) surface layer of porous asphalt on asphalt pavements where vehicle skidding and/or hydroplaning is a potential problem. Such open-graded friction courses allow storm water to filter off the surface quickly, improving friction and reducing spray and glare.

To meet new requirements for managing storm water runoff, more pavement designers in Iowa are considering possible applications of porous asphalt pavement systems. Several systems have been constructed, including two parking lots at the Luther Park Center in Des Moines, installed in 2005, and a parking lot at the Prairie Ridge Sports Complex in Ankeny, installed in summer 2006. These relatively new projects are performing as expected.

Porous asphalt applications in Iowa

Since the early 1970s, it has been common practice in Iowa to apply a thin (generally 2–3 inch) surface layer of porous asphalt on asphalt pavements where vehicle skidding and/or hydroplaning is a potential problem. Such open-graded friction courses allow storm water to filter off the surface quickly, improving friction and reducing spray and glare.

To meet new requirements for managing storm water runoff, more pavement designers in Iowa are considering possible applications of porous asphalt pavement systems. Several systems have been constructed, including two parking lots at the Luther Park Center in Des Moines, installed in 2005, and a parking lot at the Prairie Ridge Sports Complex in Ankeny, installed in summer 2006. These relatively new projects are performing as expected.

Porous asphalt applications in Iowa

Since the early 1970s, it has been common practice in Iowa to apply a thin (generally 2–3 inch) surface layer of porous asphalt on asphalt pavements where vehicle skidding and/or hydroplaning is a potential problem. Such open-graded friction courses allow storm water to filter off the surface quickly, improving friction and reducing spray and glare.

To meet new requirements for managing storm water runoff, more pavement designers in Iowa are considering possible applications of porous asphalt pavement systems. Several systems have been constructed, including two parking lots at the Luther Park Center in Des Moines, installed in 2005, and a parking lot at the Prairie Ridge Sports Complex in Ankeny, installed in summer 2006. These relatively new projects are performing as expected.

Porous asphalt applications in Iowa

Since the early 1970s, it has been common practice in Iowa to apply a thin (generally 2–3 inch) surface layer of porous asphalt on asphalt pavements where vehicle skidding and/or hydroplaning is a potential problem. Such open-graded friction courses allow storm water to filter off the surface quickly, improving friction and reducing spray and glare.

To meet new requirements for managing storm water runoff, more pavement designers in Iowa are considering possible applications of porous asphalt pavement systems. Several systems have been constructed, including two parking lots at the Luther Park Center in Des Moines, installed in 2005, and a parking lot at the Prairie Ridge Sports Complex in Ankeny, installed in summer 2006. These relatively new projects are performing as expected.

Porous asphalt applications in Iowa

Since the early 1970s, it has been common practice in Iowa to apply a thin (generally 2–3 inch) surface layer of porous asphalt on asphalt pavements where vehicle skidding and/or hydroplaning is a potential problem. Such open-graded friction courses allow storm water to filter off the surface quickly, improving friction and reducing spray and glare.

To meet new requirements for managing storm water runoff, more pavement designers in Iowa are considering possible applications of porous asphalt pavement systems. Several systems have been constructed, including two parking lots at the Luther Park Center in Des Moines, installed in 2005, and a parking lot at the Prairie Ridge Sports Complex in Ankeny, installed in summer 2006. These relatively new projects are performing as expected.

Porous asphalt applications in Iowa

Since the early 1970s, it has been common practice in Iowa to apply a thin (generally 2–3 inch) surface layer of porous asphalt on asphalt pavements where vehicle skidding and/or hydroplaning is a potential problem. Such open-graded friction courses allow storm water to filter off the surface quickly, improving friction and reducing spray and glare.

To meet new requirements for managing storm water runoff, more pavement designers in Iowa are considering possible applications of porous asphalt pavement systems. Several systems have been constructed, including two parking lots at the Luther Park Center in Des Moines, installed in 2005, and a parking lot at the Prairie Ridge Sports Complex in Ankeny, installed in summer 2006. These relatively new projects are performing as expected.

Porous asphalt applications in Iowa

Since the early 1970s, it has been common practice in Iowa to apply a thin (generally 2–3 inch) surface layer of porous asphalt on asphalt pavements where vehicle skidding and/or hydroplaning is a potential problem. Such open-graded friction courses allow storm water to filter off the surface quickly, improving friction and reducing spray and glare.

To meet new requirements for managing storm water runoff, more pavement designers in Iowa are considering possible applications of porous asphalt pavement systems. Several systems have been constructed, including two parking lots at the Luther Park Center in Des Moines, installed in 2005, and a parking lot at the Prairie Ridge Sports Complex in Ankeny, installed in summer 2006. These relatively new projects are performing as expected.

Porous asphalt applications in Iowa

Since the early 1970s, it has been common practice in Iowa to apply a thin (generally 2–3 inch) surface layer of porous asphalt on asphalt pavements where vehicle skidding and/or hydroplaning is a potential problem. Such open-graded friction courses allow storm water to filter off the surface quickly, improving friction and reducing spray and glare.

To meet new requirements for managing storm water runoff, more pavement designers in Iowa are considering possible applications of porous asphalt pavement systems. Several systems have been constructed, including two parking lots at the Luther Park Center in Des Moines, installed in 2005, and a parking lot at the Prairie Ridge Sports Complex in Ankeny, installed in summer 2006. These relatively new projects are performing as expected.

Porous asphalt applications in Iowa

Since the early 1970s, it has been common practice in Iowa to apply a thin (generally 2–3 inch) surface layer of porous asphalt on asphalt pavements where vehicle skidding and/or hydroplaning is a potential problem. Such open-graded friction courses allow storm water to filter off the surface quickly, improving friction and reducing spray and glare.

To meet new requirements for managing storm water runoff, more pavement designers in Iowa are considering possible applications of porous asphalt pavement systems. Several systems have been constructed, including two parking lots at the Luther Park Center in Des Moines, installed in 2005, and a parking lot at the Prairie Ridge Sports Complex in Ankeny, installed in summer 2006. These relatively new projects are performing as expected.
Iowa LTAP Mission
To foster a safe, efficient, and environmentally sound transportation system by improving skills and knowledge of local transportation providers through training, technical assistance, and technology transfer, thus improving the quality of life for Iowans.

Staff
Shashi Nambisan
Director of CTRE
shashi@iastate.edu
Duane Smith
Director of Iowa LTAP
desmith@iastate.edu
Marcia Brink
Communications Manager and Editor
mbrink@iastate.edu
Tom McDonald
Safety Circuit Rider
tmcdonal@iastate.edu
Georgia Parham
Secretary
gparham@iastate.edu
Alison Weidemann
Designer
Pete Hunsinger
Contributing Writers
Christianna White
Contributing Writers

Advisory Board
The people listed below help guide the policies and activities of Iowa LTAP. Contact any of the advisory board members to comment, make suggestions, or ask questions about any aspect of LTAP.

Gary Fox
Traffic and Transportation Director
City of Des Moines
Telephone: 515-283-4973

John Goode
Monroe County Engineer
Telephone: 641-932-7123

Neil Guess
Howard R. Green Company
Telephone: 515-278-2913

Joe Jurasic
Operations Engineer
FHWA - Iowa Division
Telephone: 515-233-7221

Bret Hodne
City of West Des Moines
Telephone: 515-222-3475

Charlie Purcell
Local Systems, Iowa DOT
Telephone: 515-239-1532

Wally Mook
Director of Public Works
City of Bettendorf
Telephone: 319-344-4128

Greg Parker
Johnson County Engineer
Telephone: 319-356-6046

Bob Sperry
Story County Engineer
Telephone: 515-382-7385

Chris Whitaker
Transportation Planner
Region XII Council of Governments
Telephone: 712-792-3914

Popcorn ball pavement continued from page 3

Pervious concrete applications in Iowa

Limited courses of pervious concrete were placed as early as 1852 in the United States, but applications that have been successful in other countries, like pervious concrete overlays (wet-on-wet friction courses), generally have not been tried here.

Today, however, pervious concrete pavement systems are attracting attention as an effective storm water runoff management strategy. In 2005, an ISU research team led by Vern Schaefer, professor of civil, construction, and environmental engineering, studied the feasibility of cold-weather applications of pervious concrete. Conclusion: Specific mixes can be successful in specific applications, particularly parking lots.

John Kevern, a graduate research assistant at ISU’s National Concrete Pavement Technology Center, researching pervious concrete applications in Iowa. At a pervious concrete system test lot in Ames (ISU parking lot 122, installed October 2006), he monitors storm water discharge. In the lab, he collects data on freeze-thaw cycles of various mixes of pervious concrete.

Kevern helped design and keeps tabs on several Iowa test applications of pervious concrete systems, including handicap-accessible areas and sidewalks around a parking lot at Arnold’s Park in Okoboji, and the new North Liberty Middle School parking lot. These relatively new projects are performing as expected.

For more information about pervious concrete
Contact Vern Schaefer, 515-294-9540, vern@iastate.edu, or John Kevern, 515-294-2140, kevern@iastate.edu.

See the American Concrete Institute’s 2006 publication Pervious Concrete, ACI 522R–06. To borrow a copy from the Iowa DOT library, contact Hank Zalatel, librarian, 515-239-1200, hank.zalatel@dot.state.ia.us. To order a copy from the institute’s website, see www.aci-int.net/PUBS/newpubs/522.htm.