Future of Traffic Signal Timing Training

Paul R. Olson, P.E., PTOE
Paul.Olson@fhwa.dot.gov
National Traffic Signal Timing Report Card

Figure 1 National Report Card

Score

Management: 60
Coordinated Systems: 61
Individual Intersections: 72
Specialized Operations: 50
Detection: 59
Maintenance: 67
Overall: 62

Indicators
National Traffic Signal Timing Report Card

• **We scored a D-!**

• Why such a low score?
 – Signals turn green, yellow and red
 – BUT,
 – Not operating as an efficient, well-integrated system
 – Proactive management is limited
 – Few have needed skill set
Signal Timing Payoff

- Orlando Florida $2.2m fuel savings
- LADOT fuel consumption reduced 18%
- VDOT fuel consumption reduced 4%
- California FETSIM B/C 17:1
- National Report Card B/C 40:1
How do we get there?

- Funding is key but,
- Equipment in good working order
- People that understand how to operate it efficiently
Existing Training Programs

• National Highway Institute
 – Computerized Traffic Signal Systems
 – Traffic Signal Design and Operations
• Consortium for ITS Training and Education (CITE) on line training
• Vendors and Suppliers
 – Hardware Vendors
 – Software Vendors
• State/University Programs
• On the Job
Publications

- FHWA Products
 - Signal Timing Practices and Procedures (with ITE)
 - Signal Timing on a Shoe String
 - Traffic Signal Timing Manual (in progress)
- A few local manuals exist
 - Minnesota DOT
 - Alabama DOT (in progress)
Conclusion!

- Most traffic signal timing training is
 - Paper Exercise
 - Anecdotal
 - Not in your neighborhood
 - Expensive
MOST to the Rescue!
Mobile Signal Timing Training

• Basic Needs
 – Bring training to the people
 – Make it as real as possible
 – Use real signal hardware
 – Real world exercises

• Mobile Extension of University of Idaho Signal Timing Training Program
The MOST Team

Primary Authors:
- Michael Kyte, University of Idaho
- Tom Urbanik, University of Tennessee
- Darcy Bullock, Purdue University

Contributing Team Members:
- Jim Pline, Pline Engineering
- Michael Dixon, University of Idaho
- Ahmed Abdel-Rahim, University of Idaho
- FHWA Resource Center
- Econolite Traffic Control Products
- PTV America
MOST Goals

- Increase engineers knowledge of the controller timing issues not addressed in optimization models.
- Increase engineers knowledge of field implementation issues relating to traffic signal timing.
- Increase technicians knowledge of efficiency and safety issues relating to traffic signal timing.
- Increase understanding of the effect of traffic variation on performance.
- Improve understanding of the interaction of detector design parameters and signal timing parameters.
The Concept

- Detection Data
- Traffic Signal Controller Software (or Hardware)
- Traffic Signal Controller Software (or Hardware)
- Multiple Controllers
- Micro Simulation Software
-Excercises

Traffic Signal Master Control System
The Tools

- Real or Simulated Traffic Signal Controllers
- Video Clips
- Example problems from real roadways
- Micro simulation package
Constraints

- Must be portable
- Must demonstrate the actual field equipment being used
- Must show impacts of parameter choices
- Must accommodate both Technicians and Engineers
- Run for no more than two days
Prerequisites

• Understand rings and barriers
• Understand and illustrate cycle, split and offset parameters on ring diagram
• Able to interpret output of optimization software such as Synchro, TRANSYT or PASSER.
Exercise 1

• Demonstrate multilane passage time and the MOST system
 – Understand signal performance is based on arrival pattern, detection schema and controller settings.
Exercise 2

• Develop detector and timing parameter design for cross street at isolated intersection.
 – Understand the relationship between detector length, location, gap time and minimum green time.
Exercise 3

• Understand detector and timing parameter for arterial street approach
 – Understand the relationship between small area detection location, mode of operation, passage time and minimum green.
Exercise 4

• Understand signal timing parameters at isolated intersection.
 – Understand full actuated control, soft recall, effects of pedestrians.
Exercise 5

- Understand signal timing for isolated intersections with heavy direction flows or special/unusual events
 - Understand the impacts of high volumes to include such features as dynamic maximum timers
Exercise 6

• Understand individual intersection timing and their effects on coordinated operations at medium volumes
 – Understand Offsets, including fixed and floating force offs
 – Understand programmed offset vs effective offset
 – Understand Permissive periods
 – Coordinated operation in off peak
 – Importance of Proper Offsets
 – Pedestrian operations and impacts
 – Transitioning alternatives and impacts
Exercise 7

• Understand the effect of oversaturated conditions on closely spaced intersections
 – Understand queue management
 – How offset may cause significant oversaturation.
To Be Continued

• Work is proceeding on MOST development
• Pilot offerings in 2006
• This is a totally new approach so expect some kinks along the way
• We welcome your input!